New paper showcases a carbon efficient bioenergy with carbon capture and storage (BECCS) supply chain model at high spatial resolution
8 July 2021
The methodology presented in this analysis provides a useful heuristic that can aid the carbon efficient deployment of BECCS in the UK.
The Carbon Navigation System (CNS) showcases a new methodology to model specific carbon-efficient bioenergy with carbon capture and storage (BECCS) supply chains at high spatial resolution. The CNS model is capable of searching and routing for a precise amount of biomass to a chosen location, route captured CO2 for offshore geological storage and direct energy output to end-users. The CNS model is multi-modal between trucks, rails, shipping and CO2-compatible pipelines to ensure carbon-optimal routings. The model’s operation and outputs are demonstrated through a case study approach using an illustrative sugar beet derived bioethanol BECCS supply chain.
The CNS model calculates carbon performance heatmaps for the case study supply chain, revealing the carbon-optimal position of the BECCS facility. A BECCS supply chain notation was also created, which allowed for the generation of classification maps that present the BECCS supply chain type for any given area. The CNS model can model any BECCS supply chain or be repurposed to model any other supply chain. The scope of the analysis has also been designed for easy integration with life cycle analysis and techno-economic assessments to improve their spatial resolution. The methodology presented in this analysis provides a useful heuristic that can aid the carbon-efficient deployment of BECCS in the UK and has the potential to be replicated for other countries or calculate carbon-efficient trans-national BECCS supply chains.
Read the full paper at the link below-